

Thomas Graf and Nazila Shafiei Stony Brook University

Introduction

- Phonological and morphological dependencies belong to the subregular class IO-TSL. (Kaplan & Kay 1994, Karttunen et al. 1992)
- With the right representation, syntactic dependencies (binding, NPI licensing) are IO-TSL, too.
- "Right representation"?
- c-command as primitive relation (cf. Frank and Shankar 2001)
- tree dependencies translated to constraints on c[ommand]-strings

Main Claim: Syntactic dependencies are simple (subregular) given the right representation.

2 C-command Relations as Strings

- Tree dependencies converted to string dependencies via c[ommand]-strings
- Intuition: c-string of X lists c-commanders of X
- Formally: computed over dependency trees
- *immediate c-string of X (ics)*: X + all left siblings of X
- -*c*-string of X(cs): ics(X) + cs(mother of X)

The syntactic requirements for NPI, locally bound and non-locally bound anaphors are as follows:

NPI	Locally Bound Anaphor	Non-locally Bour
c-commanding NEG	c-commanding reflexive in TP	c-commanding reflex

C-command dependencies as TSL string constraints

nd Anaphor

xive outside TP

Example 2: 0	C-strings for NPI an	d Reflexives Example Se
• NPI		
1. Nobody 2. *Anybo	saw anybody. $ ightarrow c$, dy saw nobody. $ ightarrow$	s(NPI)= anybody nobody cs(NPI)= anybody see T
• Locally Bo	ound Reflexives	
1. John sha 2. *John sa	aved himself. $\rightarrow cs$ and that himself shav	(NPI) = himself John shave ed Bill. $\rightarrow cs(NPI)$ = him
• Non-Loca	lly Bound Reflexive	s (e.g. Norwegian (Kipars
1. *John sł 2. John sai	haved $sig. \rightarrow cs(NP)$ d that Bill shaved si	$I = \text{sig John shave T C}$ $g. \rightarrow cs(NPI) = \text{sig Bill s}$
The well-form	ed c-strings for each	n constraint form a <mark>regul</mark> a
Example 3: 0	Generalized Well-for	rmed C-strings for NPIs
	NPI	Locally Bound Anap
NPI · · ·	$\{no, nobody\}\cdots$	$R[\phi] \ \overline{T}^* D[\phi] \cdots$
• \overline{T}^* matche • $R[\phi]$ is a respectively.	es strings without an eflexive.	y T-heads,
• $D[\phi]$ is a r	natching determiner	
3 Subre	gular Compl	exity
• C-string cor	straints are also sub	oregular. http://www.stricthy.com/action/lased/stricthy.lased/stricthy.lased/stricthy.lased/stricthy.lased/stricthy.lased
• IO-TSL is a	lso an upper bound	on phonotactic complexi
IO-TSL		
• IO-TSL is a	n extension of the si	<i>trictly local</i> (SL) languag
• SL-n: well-	formedness of string	g depends only on its sub

Example 4: German Final Devoicing is *SL*₂

• Forbidden Bigrams: $\{z\$, v\$, d\$\}$ (\$ = word edge).

• *rad\$ versus OK rat\$ \rightarrow d\$ is in the forbidden Gramman

Example 5: Samala Sibilant Harmony is *TSL*₂

- No string may contain sibilants that differ in anteriority
- Project tier of sibilants
- Forbidden Bigrams: all xy such that x and y differ in an

The more information the tier projection may use, the more

local context of symbol I-TSL

only the symbol itself TSL

1 + 2 + 3

Figure 2. TSL classes by tier projection parameters

IO-TSL

Contact Information: Department of Linguistics Stony Brook University Stony Brook, NY 11794-4376

Email: mail@thomasgraf.net nazila.shafiei@stonybrook.edu

tences		
see T	C	
TC		
self sh	ave T that John say T C	
$_{7}$ 2002)		
2002)		
ave T	that John say T C	
r strin	ig language.	
nd Ref	flexives	
or	Non-locally Bound Anaphor	
	$R[\phi] \cdots T \cdots D[\phi] \cdots$	
	νται	
	P-ISL	
(Grai	& Wayer 2018).	
S.		
rings	of length n	
r		
nterio	rity	
	11ty	
e powe	erful the TSL-variant:	
O-T	SL	
	3	
	a la cla clara des casterios	

Example Grammars for Dependencies Example 6: Tier-Projections for NPI and Reflexives • NPI 1. Project the first symbol. 2. Project an NPI-licensor if the previous tier-symbol is an NPI. 3. Forbidden: **NPI** \$ ^{*ok*}Nobody saw anybody anybody *licensor* anybody nobody see T С • Locally Bound Reflexive 1. Project the first symbol. 2. Project T or $D[\phi]$ if the previous tier-symbol is $R[\phi]$. 3. Forbidden: **Refl T** ok John shaved himself himself John John shave T C himself Non-locally Bound Reflexives 1. Project the first symbol. 2. Project T if the previous tier-symbol is $R[\phi]$. 3. Project $D[\phi]$ if the previous two tier-symbols are $R[\phi]$ T. 4. Forbidden: **Refl T \$** * John shaved *sig* sig

Conclusion

sig

• C-command dependencies are subregular string constraints over c-strings. • The string constraints all fall within the class IO-TSL. • The complexity of many syntactic phenomena thus is comparable to dependencies in phonology and morphology.

John shave T C \$

References

• Frank, Robert, and K. Vijay-Shanker. 2001. Primitive C-Command. Syntax 4 (3): 164-204. • Graf, Thomas, and Connor Mayer. 2018. Sanskrit n-Retroflexion is Input-Output Tier-Based Strictly Local. In Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology: 151-160. • Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule systems. Computational linguistics 20 (3): 331-378. • Karttunen, Lauri, Ronald M. Kaplan, and Annie Zaenen. 1992. Two-level morphology with composition. In Proceedings of the 14th conference on Computational linguistics 1: 141-148. • Kiparsky, Paul. 2002. Disjoint reference and the typology of pronouns. • Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language. Philosophy, Language, and Artificial Intelligence: 79-89.

*Anybody saw nobody anybody anybody see T C

*John said that himself shaved Bill

himself himself shave T C John...

^{ok}John said that Bill shaved sig sig John sig Bill shave T C John · · ·